Phenolic Compounds from Lactuca viminea L.

Mari Carmen Terencio, María Jesús Sanz, María Luisa Fonseca, Salvador Máñez, and José Luis Ríos

Departament de Farmacologia, Facultat de Farmacia, Ayda, Blasco Ibáñez 13, 46010 Valencia, Spain

Z. Naturforsch. 47c, 17-20 (1992); received June 26/July 31, 1991

Lactuca viminea, Flavonoids, Phenolic Acids, Asteraceae

The aerial part of *Lactuca viminea* L. was examined for the presence of phenolic compounds. Six different flavonoids were isolated and identified by UV spectra, TLC, HPLC-DAD, ¹H NMR and ¹³C NMR. They were identified as apigenin, luteolin, quercetin, luteolin-7-O-glucoside, quercetin-3-O-glucoside and luteolin-7-O-glucuronide-6"-methyl ester. Three phenolic acids were also detected: caffeic, ferulic and chlorogenic acid.

Introduction

Species of the genus Lactuca (Asteraceae) have been used for a long time in folk medicine as sedative plants [1]. Moreover, analgesic, antipyretic and antiinflammatory properties have been attributed to other species of this genus L. chinensis [2]. Previous phytochemical studies paid considerable attention to sesquiterpene lactones [3], which are the compounds most frequently isolated in this genus and seem to be typical of Lactuca. In spite of different terpenes having been described, flavonoids and their derivatives are now considered more important because of their possible use as chemotaxonomic markers. The aim of the present work was to isolate and characterize flavonoids and other phenolic compounds present in Lactuca viminea L., the chemical characteristics of which have never been studied previously. The results will also be used to determine the role of these products in the chemotaxonomy of this genus and the whole Lactuceae tribe. Further studies of this kind will be carried out with different Lactuca species, L. tenerrima, L. virosa and L. muralis.

Results

Phenolic compounds were obtained as explained in Materials and Methods. The main tool for determining their structure was UV spectral analysis. Peak wavelengths of the spectral measurements with the usual shifts [4, 5] are shown in

Reprint requests to Prof. J. L. Rios.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0939–5075/92/0100–0017 \$01.30/0

Table I. R_f values in different TLC conditions and t_r on HPLC-DAD are given in Table II.

Compounds **2**, **3**, and **4** were identified as apigenin, luteolin and quercetin respectively. This conclusion was reached on the basis of the coincidence between data from UV spectra, TLC and HPLC-DAD and the authentic samples.

Compound **5** gave a UV spectrum nearly equal to that of luteolin except for the fact that the lack of any shift in band II with NaOAc indicates a 7-O-substituted structure. Substitution at C-7 was

Table I. UV spectral data of the isolated compounds. Maxima in nm, dec. = decomposition, values in brackets correspond to shoulders.

	1	2	3	4	5	6	7	8
МеОН	326 237 215	334 (295) 266	348 (290) 266 253 (242)		349 (266) 254		348 (267) 255	328 218
NaOMe		388 321 274		447 281 dec.	398 261	(355)	402 (305) 268	
AlCl ₃		(382) 347 (300) 273	(330)			426 (315) 213	325	
AlCl ₃ / HCl		(380) 338 (298) 275	356	424 358 (301) 266	358 (300)	399 (365) (300) 268	357	
NaOAc		,	395 (327) 268	393 328 272 (258)	351 260	401 (317) 272	404 260	

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Table II. TLC data of the isolated compounds. A: silica gel layer, CHCl₃:MeOH (9:1); B: cellulose layer, CHCl₃:AcOH:H₂O (50:45:5); C: cellulose layer BuOH:AcOH:H₂O (4:1:5) u.p. t_r data of HPLC-DAD.

Compound	$R_{\rm f}A$	$R_{ m f}{ m B}$	$R_{\rm f}C$	$t_{\rm r}$ [min]	
1	21	92	88	19.2	
2	62	83	88	47.9	
3	39	63	85	42.4	
4	28	34	65	39.5	
5	16	62	49	37.8	
6	4	43	52	30.0	
7	2	33	44	27.8	
8	O	57	62	11.3	
9	12	59	86	11.9	

determined by NMR according to the following results: ¹H NMR of 5 aglycone moiety: δ 6.77 (s, H-3), 6.48 (d, J = 2 Hz, H-6), 6.84 (d, J = 2 Hz, H-8), 7.44 (s, H-2'), 6.94 (d, J = 8 Hz, H-5'), 7.46 (dd, J = 8 Hz, J' = 2.0 Hz, H-6'). ¹³C NMR of aglycone moiety: δ 121.6 (C-2), 103.4 (C-3), 182.1 (C-4), 161.4 (C-5), 99.2 (C-6), 162.6 (C-7), 94.7 (C-8), 157.2 (C-9), 105.7 (C-10), 121.6 (C-1'), 113.8 (C-2'), 146.0 (C-3'), 150.2 (C-4'), 116.2 (C-5'), 118.5 (C-6'); sugar moiety: 99.6 (C-1"), 71.6 (C-2"), 73.0 (C-3"), 75.4 (C-4"), 75.6 (C-5"), 169.5 (C-6"); and 51.9 (-OCH₃). These spectral data proved the presence of a methyl group esterifying a glucuronic acid, therefore, compound 5 was identified as luteolin-7-O-glucuronide-6"-methyl ester, which has never been described before in this genus.

Compounds 6 and 7 were identified as quercetin-3-O-glucoside (isoquercitroside) and luteolin-7-O-glucoside respectively. Structural determination was performed by UV spectroscopy [4] and acid hydrolysis, and glucose was identified in both compounds. Compounds 1 and 8 were identified as ferulic and chlorogenic acids on the basis of their UV spectra [6], R_f value (TLC) and t_r value (HPLC-DAD). Comparison of chromatographic data with authentic samples confirmed these results. Finally, the presence of caffeic acid, 9, was also detected, although its isolation was not performed.

Discussion

Apigenin and luteolin are the flavonoid aglycones most frequently isolated in the *Lactuca* genus. Apigenin was found in *L. indica* [7] and luteolin in *L. chinensis* [2] and *L. indica* [7]. Because they are so abundant in species of this genus and in Compositae, we believe that they may be of no taxonomical value. The presence of free quercetin has not been reported before in *Lactuca*, although it was often present in glycosidic form. These three aglycones were also detected in fresh plant samples, therefore their isolation was not due to possible hydrolytic processes during desiccation, storage or extraction.

Of the flavonoid heterosides isolated in this work, luteolin-7-O-glucoside is quite common in the genus and was to be expected that it would appear in L. viminea as it did in L. chinensis [2], L. indica [8], L. repens [9] and L. tamagawaensis [10]. On the other hand, several quercetin heterosides have been described in other *Lactuca* species, like quercetin-3-O-malonylglucoside in L. sativa [11], quercetin-3-O-galactoside in L. indica [8] and rutin from L. sativa [3]. However, isoquercitroside, which has just been identified in L. viminea, was only described in L. sativa [11]. The presence of luteolin-7-O-glucuronide-6"-methyl ester in L. viminea is also noteworthy. This compound has not been described before in species of Lactuca or other species of the Asteraceae family, although glucuronic derivatives have been isolated in species of Lactuca, like quercetin-3-β-D-glucuronide and luteolin-7-β-D-glucuronide in *L. sativa* [11].

Finally, caffeic and chlorogenic acids, present in *L. viminea*, have been detected previously in *L. sativa* [3] and *L. sonchifolia* [12]. Although isoferulic acid was described in *L. pontica* [13], the occurrence of ferulic acid in species of this genus has not been described before.

Materials and Methods

Plant material and extraction

The aerial part of *L. viminea* was collected in Eslida (Castellón, Spain) in October 1989 and a voucher specimen was deposited in the Herbarium of the Faculty of Pharmacy (Valencia, Spain). Air dried and powdered plant (636.7 g) was extracted in a soxhlet with solvents of increasing polarity (Hexane, CH₂Cl₂ and MeOH). MeOH extract (52.6 g) was evaporated under reduced pressure, dissolved in water and fractionated with Et₂O, EtOAc and BuOH to yield Et₂O (6.6 g), EtOAc (3.0 g) and BuOH (10.1 g) extracts. Little scale ex-

traction of fresh plant was carried out with hot EtOH to inhibit enzymatic hydrolysis, and EtOH extract was then treated with Et₂O to separate free flavonoid aglycones.

Separation and identification

Et₂O extract (6.6 g) was chromatographed on a silica gel 60 (Merck) column with CH₂Cl₂: MeOH (9:1), and this mixture was progressively enriched in MeOH. Five fractions were obtained $(A_1 - A_5)$. Fraction A₂ was rechromatographed on a silica gel 60 (Merck) column with a gradient of CH₂Cl₂: MeOH (95:5 to 80:20) to obtain seven fractions (B_1-B_7) . Compound 1 (5 mg) was obtained from fraction B₂ by PTLC on cellulose with CHCl₃: AcOH: H₂O (50:45:5). Compound 2 (4 mg) was isolated from fraction B4 by PTLC on silica gel with CH₂Cl₂: MeOH (9:1). Two other compounds 3 (2 mg) and 4 (5 mg) were obtained from B_7 in the same way as 1. EtOAc extract (1.5 g) was chromatographed on a Sephadex LH-20 column with MeOH: H₂O (8:2). Six fractions were obtained (C_1-C_6) . Compound 5 (11 mg) was isolated by precipitation from fraction C₁, and purified by washing with MeOH. Compounds 6 (4 mg) and 7 (3 mg) were obtained from fraction C₄ by PTLC on cellulose with BuOH: AcOH: H₂O (4:1:5), upper phase (u.p.). Finally a portion of BuOH extract (200 mg) was chromatographed on a Lobar Lichroprep RP-8 column with MeOH: H₂O (6:4). Compound 8 was obtained directly.

Phenolic compounds were detected by TLC and HPLC-Diode Array Detector (HPLC-DAD). TLC was performed using silica gel 60 G and microcrystalline cellulose (Merck) on aluminium sheets. 365 nm UV light and aminoethyl ester of diphenylboric acid 1% in MeOH (Neu's reagent) were used as detectors. $R_{\rm f}$ values were compared with authentic samples and literature data [14]. HPLC-DAD was carried out on a Merck-Hitachi

HPLC system (L-6200 pump) equipped with a L-3000 Photodiode Array detector and a prepacked analytical column (12.5 × 0.7 mm) of Lichrospher RP-18 (5 µm). The following conditions were used: Eluents: H₂O + TFA 0.05% (A), MeOH + TFA 0.05% (B). Elution profile: 0 min, 90% A; 0-5 min, 80% A; 5-45 min, 50% A; 45-55 min, 20% A; 55-59 min, 80% A. Flow rate was 1 ml/min and column pressure 60-80 bar. UV detector was set at 255 nm. Data were compared with authentic samples. Identification was carried out by UV spectra on a Perkin Elmer 3 UV/VIS spectrophotometer ¹H NMR and ¹³C NMR spectra on Varian Gemini spectrometer (200 MHz) in deuterated DMSO. Substances which were suspected to be glycosides were subjected to acid hydrolysis: a solution of the glycoside (1 mg) in 5 ml of 2 N HCl-MeOH (1:1) was kept for 60 min at 100 °C. The aglycones were separated by repeated extraction with EtOAc after removing MeOH. TLC of sugars was performed with silica gel layer and EtOAc: AcOH: MeOH: H₂O (65:20:15:15). Spots were detected by spraying with 0.5% thymol in H₂SO₄-EtOH (5:95) and heating at 120 °C for 15 min.

Authentic samples

Luteolin and apigenin (C. Roth, Karlsruhe); quercetin (Merck, Darmstadt); quercetin-3-O-glucoside and luteolin-7-O-glucoside (Apin Chemicals, Abingdon, U.K.); ferulic, chlorogenic and caffeic acid (Sigma Chemical Co., St. Louis, U.S.A.).

Acknowledgements

This work was supported by the "Comisión Interministerial de Ciencia y Tecnología" from the Spanish Government (project No. PS 87-0100).

- [1] R. R. Paris and H. Moyse, Matière médicale, Vol. 3, p. 427, Masson, Paris 1971.
- [2] Y. L. Huang, C. C. Chen, and H. Y. Hsu, T'ai-wan Yao Hsueh Tsa Chih 36, 211 (1984); Chem. Abstr. 103, 68309 (1985).
- [3] A. G. González, in: The Biology and Chemistry of Compositae, Vol. 2 (V. H. Heywood, J. B. Harborne, and B. L. Turner, eds.), pp. 1081–1095, Academic Press, London 1977.
- [4] T. J. Mabry, K. R. Markham, and M. B. Thomas, The Systematic Identification of Flavonoids, Springer Verlag, New York 1970.
- [5] B. Voirin, Phytochemistry 22, 2107 (1983).
- [6] J. B. Harborne, Phytochemical Methods, p. 49, Chapman and Hall, London 1984.
- [7] A. A. S. El Din, M. G. El Ghazouly, and A. H. Abou-Donia, Alexandria J. Pharm. Sci. 1, 5 (1987); Chem. Abstr. 110, 72505 (1989).

- [8] M. Kaneta, H. Hikichi, S. Endo, and N. Sugiyama, Agric. Biol. Chem. 42, 475 (1978).
- [9] R. Hegnauer, Chemotaxonomie der Pflanzen, Vol. 3, Birkhauser, Basel 1973.
- [10] H. Asada, T. Miyase, and S. Fukushima, Chem. Pharm. Bull. 32, 1724 (1984).
- [11] M. Wöldecke and K. Herrmann, Z. Naturforsch. 29c, 355 (1974).
- [12] S. S. Park, Hanguk Saenghwa Hakhoe Chi **10**, 241 (1978), Chem. Abstr. **90**, 51411 (1979).
- [13] D. M. Tsakadze, T. N. Kiparenko, C. S. Shengeliya, R. Ziyaev, and A. Abdusamatov, Soobshch. Akad. Nauk Gruz. SSR 84, 105 (1976); Chem. Abstr. 86, 52709 (1977).
- [14] K. Egger, in: Thin Layer Chromatography (E. Stahl, ed.), pp. 687-706, Springer Verlag, Berlin 1969.